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Gene vectors derived from DNA 
transposable elements have become 

powerful molecular tools in biomedical 
research and are slowly moving into the 
clinic as carriers of therapeutic genes. 
Conventional uses of DNA transposon-
based gene vehicles rely on the intra-
cellular production of the transposase 
protein from transfected nucleic acids. 
The transposase mediates mobilization 
of the DNA transposon, which is typi-
cally provided in the context of plasmid 
DNA. In recent work, we established 
lentiviral protein transduction from 
Gag precursors as a new strategy for 
direct delivery of the transposase pro-
tein. Inspired by the natural properties 
of infecting viruses to carry their own 
enzymes, we loaded lentivirus-derived 
particles not only with vector genomes 
carrying the DNA transposon vector 
but also with hundreds of transposase 
subunits. Such particles were found to 
drive efficient transposition of the pig-
gyBac transposable element in a range of 
different cell types, including primary 
cells, and offer a new transposase deliv-
ery approach that guarantees short-term 
activity and limits potential cytotoxic-
ity. DNA transposon vectors, originally 
developed and launched as a non-viral 
alternative to viral integrating vectors, 
have truly become viral. Here, we briefly 
review our findings and speculate on the 
perspectives and potential advantages of 
transposase delivery by lentiviral protein 
transduction.

It is fascinating how ancient and 
extremely primitive DNA transposable 
elements are making an impact in a world 

of modern and advanced genetics that is 
constantly climbing to new technological 
heights. In spite of their genetic simplic-
ity, parasitic mobile DNA elements have 
infiltrated and colonized the genomes of 
all living creatures, exploiting the capacity 
to relocate between genomic loci and mul-
tiply in numbers. Fossil remnants of these 
once actively jumping elements have lost 
the mobility due to accumulating muta-
tions, and hide in genomes across the ani-
mal kingdom as inactive marks of a past 
genetic history. The piggyBac DNA trans-
poson is one of the exceptions to the rule. 
This element was first identified when it 
actively jumped from its insect host, the 
cabbage looper moth Trichoplusia ni, into 
the genome of a baculovirus.1 The active 
mobility of the piggyBac transposon led to 
its use in genetic analyses of insects,2 but 
its capacity to insert genes in mammalian 
cells was not unveiled until recently.3,4 
Screening of a library of mutant trans-
posases led to the identification of a hyper-
active piggyBac transposase, hyPBase, with 
even higher activity in human systems. 
Another DNA transposon, the Sleeping 
Beauty element was the first transposable 
element shown to efficiently transpose in 
mammalian cells.5 This element, a mem-
ber of the Tc1/mariner transposon family, 
was reconstructed from salmonid trans-
posable elements by consecutive steps of 
mutagenesis, facilitating its subsequent 
use in genetic engineering,6,7 animal trans-
genesis,8-10 forward genetic screens,11,12 and 
therapeutic gene transfer.13-15 Engineering 
of the hyperactive SB100X transposase 
variant, generated by a high-throughput 
PCR-based DNA shuffling approach,16 
and vectors with improved inverted 
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repeats17,18 have added further efficacy to 
the system.

In their most typical composition, DNA 
transposons contain a single gene encod-
ing the transposase protein. The gene is 
flanked by two inverted terminal repeats 
that serve as binding sites for transposase 
protein during cut-and-paste transposi-
tion. Interaction of transposase subunits 
binding to each of the terminal regions 
of the transposon facilitates the close 
association of the transposon ends allow-
ing first excision from a donor and inser-
tion into an acceptor site. Conventional 
DNA transposon-based vector systems 
are based on the co-delivery of (i) donor 
plasmids carrying the DNA transposon 
vector including the gene of interest and 
(ii) plasmids carrying the transposase 
expression cassette. Alternatively, in vitro-
transcribed RNA molecules may serve as 
a source of the transposase.19 Also, viral 
vectors, including lentiviral, adenoviral, 
and adeno-associated viral vectors, have 
been adapted as carriers of the transposase 
expression cassette.20-23

Common for all current DNA trans-
poson systems is the need for intracellu-
lar production of the transposase. Ideally, 
DNA transposition is achieved within a 
short time-frame defined by a short-term 
boost of protein production and activ-
ity. It is challenging, however, to control 
the level and longevity of expression after 
plasmid transfection or viral vector trans-
duction, and even transient expression 
strategies may cause sustained expression 
of the transposase, at least in slowly pro-
liferating tissues and cell types. Also, in 
many cell types DNA and RNA transfec-
tion or nucleofection procedures tend to 
create massive nuclear accumulation of 
the transposase, which may on one hand 
be desired for optimal efficacy but on the 
other increase the risk of inserting numer-
able copies of the transposon or harm the 
cells otherwise. Adding to this, delivery 
of transposase-encoding plasmid DNA or 
viral vectors comes with the inherent risk of 
stably integrating the transposase expres-
sion cassette (often driven by a strong pro-
moter) in the genome of the treated cells. 
It is known that transposases may interfere 
with normal cell cycle progression24 and 
cause premitotic cell cycle arrest and even 
apoptosis through mechanisms involving 

activation of p53 and c-Jun.25 By processes 
that are potentially linked to such toxicity, 
too high transient transposase expression 
levels lead to reduced efficacy of DNA 
transposition.14,26 We have previously dis-
cussed these aspects in detail.27 This type 
of regulation, normally referred to as over-
production inhibition (OPI), may possibly 
reflect natural regulatory mechanisms or, 
alternatively, that artificial overproduc-
tion of the transposase may harm the cells 
and even cause cell death.

In light of the uncertainties and 
potential safety precautions associated 
with intracellular production of effec-
tor proteins, like transposases and endo-
nucleases, it is important to scrutinize 
other means of delivering such proteins 
to cells. Direct delivery of protein itself 
is an obvious alternative that, if success-
ful, guarantees short-term activity and 
limits potential cytotoxicity. Fused to 
proteins of interest, cell-penetrating pep-
tides (CPPs), also referred to as protein 
transduction domains (PTDs), can facili-
tate cellular protein uptake28 and hold the 
potential to carry drugs into the interior 
of cells. A recent study unveiled intrin-
sic cell-penetrating capacities of zinc-
finger nucleases (ZFNs), allowing direct 
delivery of recombinant ZFN protein 
to mammalian cells in vitro.29 However, 
recombinant production of functional 
Sleeping Beauty and piggyBac transposases 
has turned out to be extremely challeng-
ing, and the few published attempts did 
not successfully demonstrate efficacy of 
DNA transposition catalyzed by recombi-
nant transposases.30,31 Low levels of activ-
ity may be explained by problems related 
to production and purification of active 
transposase as well as to reduced cellular 
uptake potentially caused by entrapment 
of protein in the endosomes.32

To establish effective DNA transpo-
sition without the need of transferring 
transposase-encoding nucleic acids, we 
recently set out to investigate an alterna-
tive route for delivering transposase pro-
teins to cells.33 Inspired by the capacity 
of viruses to carry their own enzymatic 
proteins, we sought to examine the ability 
of lentivirus-like particles to incorporate 
heterologous proteins like the piggyBac 
and Sleeping Beauty transposases. Here, 
we briefly review our findings, published 

earlier this year in Nucleic Acids Research,33 
and speculate on the perspectives and fur-
ther applications of transposase delivery 
by lentiviral protein transduction.

Early studies demonstrated that the 
structure of gamma-retroviruses is suffi-
ciently flexible to allow incorporation of 
foreign proteins fused to the Gag poly-
peptide.34,35 More recently, this approach 
was successfully employed to deliver the 
Flp recombinase ferried within Gag pre-
cursors in murine leukemia virus (MLV) 
particles.36 In accordance with these find-
ings, HIV-1-derived lentiviral particles 
were found to tolerate the inclusion of het-
erologous proteins fused to Gag. Work by 
the Komano group demonstrated release 
of proteins like β-lactamase, GFP, and 
caspase 3 upon virion maturation37,38 and 
established a basis for exploiting lentivi-
ral Gag precursors as carriers of proteins 
and drugs. Using a related approach, 
Schenkwein and coworkers fused heter-
ologous proteins to the integrase protein 
within the Pol region of the GagPol poly-
peptide.39 Despite the fact that lentivi-
ral particles contain considerably fewer 
GagPol than Gag polypeptides, the strat-
egy effectively supported transfer of the 
mCherry reporter protein and p53, the 
latter of which was found to trigger apop-
tosis in virus-treated cells. Hitch-hiking of 
proteins in Gag and GagPol polypeptides 
offers attractive alternatives to previous 
approaches based on the viral incorpora-
tion of proteins fused to the HIV-1 acces-
sory protein Vpr.40,41 Vpr-based fusions 
have been successfully used to deliver 
reporter proteins, Cre recombinase, and 
I-SceI meganuclease to virus-treated 
cells,40,42,43 but the relatively few copies 
of Vpr in the particles44 and the potential 
toxicity of Vpr45 may restrict the applica-
bility of this approach. Table 1 provides 
an overview of the strategies that have 
been successfully utilized to incorporate 
and transfer foreign proteins of interest 
(POIs) in lentiviral particles.

To convert lentiviral particles into 
transposase protein delivery vehicles, 
we introduced the transposase in the 
N-terminus of the Gag polypeptide at a 
position between the matrix protein and 
an artificially introduced myristoylation 
signal derived from the Lyn kinase.37 Also, 
in the modified packaging construct, we 
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introduced the D64V mutation in the 
integrase gene,68 certifying that the nor-
mal lentiviral integration machinery of 
such particles was not active. Assisted by 
HIV-1 protease cleavage sites flanking 
the transposase protein, the transposase 
was effectively liberated from Gag and 
GagPol polypeptides upon virion matu-
ration. Western analyses demonstrated 
potent incorporation of both SB100X and 
hyPBase transposasases in virions. Our 
first indications of the efficacy of virally 
delivered transposases came from obser-
vations of high levels of piggyBac DNA 
transposition. In HeLa cells, treatment 
with hyPBase-loaded virus particles trig-
gered higher levels of transposition than 
we normally observe with a standardized 
plasmid co-transfection protocol. A sche-
matic overview of DNA transposition 
driven by a conventional plasmid-based 
system and by lentiviral protein transduc-
tion is provided in Figure 1.

We have previously shown that DNA 
transposons are effectively mobilized from 
lentiviral DNA intermediates generated by 
reverse transcription of integrase-defective 
lentiviral vectors (IDLVs).22,23 This led 
to the idea that lentiviral particles could 
potentially accommodate both the trans-
posase and the transposon, essentially 
mimicking conventional lentiviral vectors 
carrying both integrase protein and the 
recognition sites for active gene insertion. 
During the analysis of transposase-loaded 
IDLVs, we encountered the obstacle 
that transfer of the vector was markedly 
restricted by the load of Gag-fused trans-
posase molecules. However, this problem 
was solved by generating particles com-
posed of both wildtype and transposase-
containing Gag and GagPol (still carrying 
the D64V mutation). Such chimeric par-
ticles supported quite significant levels of 

piggyBac DNA transposition in a panel 
of cell types including human primary 
keratinocytes and normal human dermal 
fibroblasts. Notably, such transposition 
was not evident when the particles were 
loaded with a mutated, inactive variant of 
the hyPBase and when the particles were 
not able to get access to the cells due to 
lack of VSV-G pseudotyping.

With experimental evidence for this 
new gene delivery concept, we went on to 
characterize the transduced cells in more 
detail using confocal microscopy. This 
analysis showed, perhaps surprisingly, 
quite low cellular levels of the transposase, 
which was visible only in few concentrated 
foci within transduced cells. In compari-
son, cells transfected with hyPBase-encod-
ing plasmid displayed massive nuclear 
accumulation of the transposase. Still, 
the level of transposition, as measured by 
colony formation after mobilization of 
a transposon containing the puromycin 
resistance gene, was higher using the viral 
approach. We believe that this observation 
reflects that more or less all the cells were 
transduced by the viral vector, whereas a 
lower percentage of cells were transfected 
with plasmid DNA. Following this rea-
soning, a high transduction rate may 
compensate for the potential limitations 
of DNA transposition from virally deliv-
ered substrates. In line with this notion, 
we made an interesting observation when 
genomic vector copy numbers were deter-
mined after DNA transposition. Notably, 
all analyzed puromycin-resistant clones 
generated after virus-mediated trans-
position contained a single copy of the 
transposon, whereas transposition after 
plasmid transfer resulted in clones with 
variable copy numbers, half of them with 
5 or more (and up to 12) copies of the 
transposon. The background for such key 

differences between plasmid- and virus-
based transposase delivery is schematically 
depicted in Figure 2.

Our data confirmed that DNA trans-
position after plasmid transfection may 
result in multiple insertions. This return-
ing observation in the transposon field 
is the expected result of both strong and 
prolonged expression of the transposase as 
well as concomitant high levels of transpo-
son donor plasmid in cells that are fairly 
easy to transfect. In clones developing 
from a transfected cell, DNA transposi-
tion is likely to keep going for several 
cell divisions until the plasmids are lost. 
This means that DNA transposons that 
are initially inserted in chromosomal 
DNA can be re-excised from the genome 
or, likely more frequent, that additional 
DNA transposons in a developing clone 
may be transferred from plasmid DNA to 
locations within the chromosomes. As a 
result, such ‘clones’ may be composed of 
subclones containing a variable number 
of insertions and, hence, may not be truly 
clonal. This will lead to clonal heterogene-
ity in terms of transgene expression. Much 
like diluted preps of conventional lenti-
viral vectors, transposase-loaded IDLVs 
balance the level of gene insertion in each 
transduced cell leading only to a single 
insertion. Thus, this technique can sup-
port applications where only one insertion 
of the transposon is desired. As a direct 
consequence, clones resulting from the 
short-term action of the transposase dur-
ing protein transduction are more likely 
to display homogenous expression of the 
transgene.

Our data show that hyPBase delivered 
in lentiviral particles can get access to 
DNA transposons localized either in co-
transfected plasmid DNA or in co-trans-
duced IDLVs. This argues that transposase 

Table 1. overview of strategies used to deliver proteins of interest (PoIs) by lentiviral protein transduction

POI incorporation strategy Transferred POI

Gag-PoI (PoI fused to p6) GFP,46 yFP,47,48 CFP,47,48 mCherry,49 pHluorin49

PoI-Gag-Pol (PoI fused to ma) GFP,37 β-lactamase,37 Caspase-338

ma-PoI-Ca (PoI inserted between ma and Ca) GFP50

Gag-Pol-PoI (PoI fused to In) mCherry,39 p53,39 λ repressor,51 Lexa,52 I-PpoI,53 Zif268,54 e2C55,56

Vpr-PoI (PoI fused to Vpr) GFP,57,58 Sn,41 Cat,41 In,59,60 rt,60 Pr,61 Cre,43 I-SceI,42 Luc,62 a3G,63 HSV-tK,64 linamarase64

PoI-WXXF (PoI fused to Vpr-binding WXXF-motif ) Cat,65 In,66 scab67

nef-PoI (PoI fused to nef) GFP,75,76 HSV-tK76,77
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subunits at a certain stage during trans-
duction are liberated from the invading 
pre-integration complex (PIC), allowing 
formation of transposition complexes on 
substrates delivered in trans. Still, the effi-
ciency of the approach seems to be further 
improved by incorporating transposases 
in transposon-carrying IDLVs. In analogy 

with conventional lentiviral vectors carry-
ing both the integrase and the substrate 
for the integration process, we believe 
that the proximity between transposases 
and the reverse-transcribed substrate 
within the PIC is supporting the overall 
efficiency of the process. In this way, the 
PIC is potentially offering an intracellular 

environment with high, local concentra-
tion of the transposase and, hence, com-
pensating for the overall low levels of 
transposase in virus-treated cells.

As part of our endeavor to establish 
DNA transposition by protein deliv-
ery in human cells, we repeatedly tried 
to incorporate the hyperactive SB100X 

Figure 1. Schematic comparison of piggyBac Dna transposition by plasmid Dna transfection and lentiviral protein transduction. (A) Dna transposition 
by co-transfection of the Dna transposon donor plasmid and transposase-encoding plasmid. transport through the cytoplasm and nuclear uptake 
lead to production of hyPBase transposase, which is subsequently imported into the nucleus. Within the nucleus the transposon-based gene vector 
(indicated in green) is excised from the donor plasmid and inserted into a genomic locus. (B) Dna transposition by lentiviral protein transduction in inte-
grase-defective lentiviral vectors (IDLVs). engineered lentiviral particles carry both the hyPBase protein (indicated by small light-purple circles) and the 
diploid rna vector genome (indicated by green lines). Cell entry mediated by the VSV-G surface protein occurs through endocytosis and subsequent 
endosomal escape. reverse-transcribed double-stranded Dna intermediates serve as transposon donors. along with linear Dna substrates, 1-Ltr and 
2-Ltr circles generated by homologous recombination and non-homologous end joining, respectively, may serve as transposon donors. Question 
marks indicate that it is not currently known whether transposase subunits are associated with the transposon in the cytoplasm or are imported into 
the nucleus prior to association with the transposon terminal repeats. It is currently unclear whether the transposase remains part of the pre-integration 
complex (PIC) during nuclear entry or is released from the PIC during cytoplasmic transport.
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transposase16 in lentiviral particles. We 
have seen that Gag-fused SB100X is 
indeed effectively packaged into viri-
ons and also liberated from Gag during 
virion maturation, but so far we have 
not been able to demonstrate efficacy of 
such virally delivered SB100X proteins. 
The lack of function is at least partially 
explained by the negative effect of the 
C-terminal 4-amino acid tag originating 
from the protease cleavage site between 
SB100X and Gag. The cleavage site is 
required to ensure proper release of the 
SB100X during virion maturation, but 
the N-terminal part of the cleavage site 
remains an integrated part of the protein 

after cleavage. In separate analyses of dif-
ferent plasmid-encoded SB100X variants 
with such small peptide tags fused to the 
C-terminus of the protein, we have seen 
that the function is completely abolished. 
This confirms the general notion that the 
C-terminus of SB transposases needs to 
be left untouched for full activity of the 
protein69 and that piggyBac transposases 
are more flexible and less vulnerable to 
such changes.70 To facilitate lentiviral 
SB100X protein transduction, it would be 
an alternative option to fuse SB100X to 
the C-terminal end of GagPol, allowing 
release of a protein with an additional tag 
only in the N-terminus.

DNA transposons are by definition non-
viral transposable elements, and derived 
gene vectors were originally developed 
and launched as a non-viral alternative to 
viral integrating vectors. As such, they are 
already powerful tools in biomedicine and 
now moving into the clinic.71 Why then 
bother adapting virus particles as carri-
ers of transposases? By showing proof-of-
concept that genomic engineering tools 
can be directly delivered by lentiviral par-
ticles, we are addressing one of the major 
potential challenges related to current 
systems of genomic engineering and edit-
ing. Is it appropriate and sufficiently safe 
to overexpress enzymes like transposases 

Figure 2. Comparative models of Dna transposition observed after plasmid Dna transfection and lentiviral protein transduction. red marking indicates 
schematically the patterns of immunostaining that were observed by confocal microscopy of cells stained with an antibody specific for Ha-tagged hyP-
Base transposase.33 Plasmid Dna transfection leads to dramatic overexpression of the transposase in successfully transfected cells, whereas lentiviral 
protein transduction results in much lower overall levels of the transposase in virus-treated cells. Small red dots in transduced cells indicate that the 
transposase is present in all cells, but only observed in concentrated foci primarily within the cytoplasm. ‘t’ indicates cells in which successful transposi-
tion is achieved. effective Dna transposition is a likely result of robust nuclear levels of transposase, potentially leading to several transposon insertions 
in a single cell/clone, whereas Dna transposition supposedly is less efficient and does not occur in all transposase-positive cells after protein transduc-
tion. as a result, however, all resulting clones contain only a single integrated copy of the transposon. See text for further details.
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and site-targeted nucleases within treated 
cells? Lentiviral protein transduction is 
the first approach that allows efficacious 
DNA transposition in human cells after 
direct protein delivery. Previous attempts 
to produce and deliver recombinant trans-
posases have had limited success,30,31 and 
lentiviral particles furthermore offer the 
opportunity of delivering transposases 
and transposon substrates simultaneously 
in a single vehicle. As an additional bonus, 
such hybrid particles generally seem to 
generate only a single genomic insertion of 
the DNA transposon, although this phe-
nomenon needs to be further scrutinized 
in additional cell types. Also, the option 
of targeting DNA transposition to certain 
cell types by pseudotyping of the lentivi-
ral particles deserves more attention in the 
future.

Early studies showed the applicabil-
ity of plasmid-based DNA transposition 
system in vivo with initial focus on the 
mouse liver.14,26 Many other tissues are 
significantly less accessible to plasmid 
DNA transfection, and low transfection 
rates are challenging in terms of wider 
in vivo use of both Sleeping Beauty- and 

piggyBac-based systems. It is tempting to 
speculate that transposase-loaded IDLVs 
could be paving the way for several new in 
vivo applications of piggyBac DNA trans-
position. One such application could be 
gene insertion by DNA transposition in 
skin. We have previously demonstrated 
efficient gene delivery and prolonged 
transgene expression in human skin 
intradermally injected with lentiviral vec-
tors.72,73 Future studies will show whether 
injection of IDLVs carrying the PB trans-
posase can facilitate in vivo DNA trans-
position in skin progenitor cells. As we 
explore new ways of exploiting this trans-
posase delivery approach, we are hard at 
work stretching the boundaries of lenti-
viral particles as transporters of foreign 
cargo. Most recently, we demonstrated 
targeted genome editing by lentiviral 
protein transduction of programmable 
nucleases co-delivered in virus particles 
with substrates for homology-directed 
recombination.74
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