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Abstract

Motivation: The mutations of cancers can encode the seeds of their own destruction, in the form of T-cell recogniz-
able immunogenic peptides, also known as neoantigens. It is computationally challenging, however, to accurately
prioritize the potential neoantigen candidates according to their ability of activating the T-cell immunoresponse, es-
pecially when the somatic mutations are abundant. Although a few neoantigen prioritization methods have been
proposed to address this issue, advanced machine learning model that is specifically designed to tackle this problem
is still lacking. Moreover, none of the existing methods considers the original DNA loci of the neoantigens in the per-
spective of 3D genome which may provide key information for inferring neoantigens’ immunogenicity.

Results: In this study, we discovered that DNA loci of the immunopositive and immunonegative MHC-I neoantigens
have distinct spatial distribution patterns across the genome. We therefore used the 3D genome information along
with an ensemble pMHC-I coding strategy, and developed a group feature selection-based deep sparse neural net-
work model (DNN-GFS) that is optimized for neoantigen prioritization. DNN-GFS demonstrated increased neoanti-
gen prioritization power comparing to existing sequence-based approaches. We also developed a webserver named
deepAntigen (http://yishi.sjtu.edu.cn/deepAntigen) that implements the DNN-GFS as well as other machine learning
methods. We believe that this work provides a new perspective toward more accurate neoantigen prediction which
eventually contribute to personalized cancer immunotherapy.

Availability and implementation: Data and implementation are available on webserver: http://yishi.sjtu.edu.cn/
deepAntigen.

Contact: yishi@sjtu.edu.cn or menglum@scnu.edu.cn or darlt@sjtu.edu.cn or heguang@sjtu.edu.cn or hanzg@sjtu.edu.cn
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1. Introduction

The approval of several immunotherapies has led to dramatic changes
in cancer therapy. In variety human malignancies, therapeutic efficacy
was enhanced by immunotherapies via boosting the endogenous T
cell’s ability to destroy cancer cells (Schumacher and Schreiber,
2015). The ‘checkpoint inhibitors’ therapies work by blocking pro-
teins that act as molecular breaks for T cells. With the breaks
removed, T cells can better undertake their job to kill cancer cells.
Despite the great success of checkpoint inhibitors, still many patients
do not respond to the agents, and many that do temporarily respond,
eventually relapse. Moreover, checkpoint inhibitors do not fully take
advantage of the T cell’s exquisite specificity, one of its most import-
ant characteristics (Sompayrac, 2019). This led many researchers pay
more attention to the new immunotherapy strategies against tumor
known as neoantigen therapies. T cells are potent at killing when they
recognize ‘foreign’ antigens which could be some protein fragments
from an invading virus or bacteria. The key ability of T cells in distin-
guishing foreign antigens from self and prevents autoimmunity, which
on the contrast makes them less potent in recognizing tumor cells be-
cause they are our own but abnormal cells. The T cells overcome this
dilemma in two ways. First, they tend to respond to tissue-specific
antigens which are specific amino-acid fragments produced by cells of
certain types. Second, T cells respond to neoantigens which are small
peptides generated in tumor cells containing high level of DNA muta-
tions. The non-synonymous mutations can be entirely absent from
the human genome, leading the cancer cells vulnerable to T cells as
they look ‘foreign’ (Sompayrac, 2019).

In several clinical practices, it has been demonstrated that en-
dogenous T cells with mounted cancer-killing T-cell receptor (TCR)
are able to recognize epitopes which are composed of the peptides
displayed on major histocompatibility complexes (MHCs) on the
surface of the cancer cells (Ott et al., 2017; Schumacher and
Schreiber, 2015). With the help of DNA- and RNA-sequencing tech-
nology, it has been revealed that tens to thousands of different som-
atic mutations can be generated during cancer initiation and
progression, depending on different cancer types (Castro et al.,
2019; Prior et al., 2019; Volkov et al., 2020). Most of these muta-
tions are often caused by genomic instability within the tumor cells
and lead to no obvious cell growth advantage; they are also known
as passenger mutations. On the contrast, a small percent of these
mutations are known as driver mutations which interfere with nor-
mal cell regulation and help to drive cancer growth and resistance to
targeted therapies (Yarchoan et al., 2017). Both passenger and
driver mutations can cause tumor to express abnormal proteins or
polypeptides that cannot be found in normal cells as they can be
non-synonymous mutations that alter protein-coding sequences.
When cell metabolize, the proteins possessing abnormal sequences
are cut into short peptides and are presented as epitopes on the cell
surface by the MHC (also known as human leukocyte antigen,
HLA, in human case) molecules, which have a chance to be recog-
nized by T cells as foreign antigens (Yarchoan et al., 2017). An ef-
fective neoantigen, which leads to the final immunological response,
is determined by many factors. For instance, Dintzis et al. (1976)
found that size-fractionated linear polymers of acrylamide substi-
tuted with hapten can affect the immunogenicity triggering. Other
factors such as peptide degradation and transportation, peptide–
MHC binding affinity and stability and pMHC–TCR interaction
should also be considered (Blaha et al., 2019).

Based on the earlier knowledge, in ideal situation, after the
DNA-sequencing procedure, potential neoantigens can be synthe-
sized in vitro and their efficacy can be validated in vivo via either
cancer cell-line or animal model, before conducting in clinical prac-
tice (Schumacher and Schreiber, 2015; Yarchoan et al., 2017).
Indeed, the cancers with a single dominant mutation can often be ef-
fectively treated by focusing on the driver mutation (O’Brien et al.,
2003; Yarchoan et al., 2017). Nevertheless, in many other cancer
situations, the somatic mutations are usually abundant, which lead
to a computationally challenging task to efficiently prioritize the po-
tential neoantigen candidates according to their ability to activate
the T cell’s immunoresponse (Hackl et al., 2016). In the past decade,
many prediction methods have been proposed to address the

neoantigen prioritization problem (Jurtz et al., 2017; Lundegaard
et al., 2008; Nielsen and Andreatta, 2016). These methods can be
categorized into two major classes: the protein spatial conformation-
based approaches which consider the pMHC and TCR 3D structures,
and the protein sequence-based approaches which consider the
amino-acid combinatorial characters. For the protein spatial
conformation-based approaches, when high-quality pMHC 3D struc-
tures are available, methods such as molecular dynamic (MD) can be
adopted to explore the complex interaction between TCR and
pMHC (Blevins et al., 2016; Riley et al., 2018; Wang et al., 2017). If
high-quality pMHC spatial information is lacking, by sacrificing com-
putational complexity and spatial model accuracy, computational
pMHC modeling can be adopted, followed by 3D to 1D feature
transformation and machine learning approaches (Riley et al., 2019).
Most neoantigen prediction methods belong to the sequence-based
class because they can usually be set up efficiently (Gupta et al., 2016;
Hackl, et al., 2016), and there are much larger datasets available for
training and validation (Vita et al., 2019; Zhang et al., 2011).

Early sequence-based methods such as BIMAS (Parker et al.,
1994) and SYFPEITHI(Schuler et al., 2007) utilized the position-
specific scoring matrices (PSSMs), which are defined from experi-
mentally confirmed peptide binders of a particular MHC allele
(Hackl et al., 2016). More sophisticated approaches based on ma-
chine learning techniques were later developed which were demon-
strated to perform better than the PSSM-based methods; these
approaches capture and utilize the non-linear nature of the pMHC–
TCR interaction. In recent years, consensus approaches such as
CONSENSUS (Moutaftsi et al., 2006) and NetMHCcons (Karosiene
et al., 2012) were exploited which combine the results of multiple
neoantigen prediction tools, aiming to obtain more robust and accur-
ate outcomes, and their efficacies were supported by experimental
results. Nonetheless, the performance gain of these methods is deter-
mined by the weighting scheme among different prediction compo-
nents, which lead to increased computational complexity
(hyperparameter tuning). Because the peptide MHC binding can be
affected by HLA allele variety, most recently, the pan-specific meth-
ods, such as NetMHCpan (Jurtz et al., 2017; Nielsen and Andreatta,
2016), were developed which allow the HLA-type independent priori-
tization. In NetMHCpan, a neural network is first trained based on
multiple public datasets, then the binding affinity for a given peptide–
MHC complex is predicted according to the trained neural network,
with the polymorphic HLA types, e.g. HLA-A, HLA-B or HLA-C
being considered. Even compared to HLA allele-specific approaches
(Hackl et al., 2016; Trolle et al., 2015), both NetMHCpan (Jurtz
et al., 2017) and NetMHCIIpan (Karosiene et al., 2013) could per-
form remarkably better. Although methods such as NetMHC or
NetMHCpan were designed to predict peptide–MHC binding affin-
ity, they were either considered as strong indicators for neoantigens’
effectiveness (Harndahl et al., 2012; Lundegaard et al., 2011;
Rasmussen et al., 2016), or were adopted as important features in the
state-of-the-art neoantigen-predicting methods such as Neopepsee
and pTuneos (Kim et al., 2018; Zhou et al., 2019). More recently,
Wu et al. (2019) proposed a recurrent-neural-network-based ap-
proach DeepHLApan which considered both pMHC binding and po-
tential immunogenicity, yet sequence information of both peptide and
HLA were still adopted as training features.

For all the existing neoantigen prediction methods, although sev-
eral evaluation criteria were proposed for a more fair and robust
comparison (Peters et al., 2006; Trolle et al., 2015; Wang et al.,
2008), independent benchmark studies that can be used to recom-
mend specific tools are still lacking. More importantly, although
there are abundant previous researches indicating that somatic
mutations, including point mutations, gene fusions and copy num-
ber abnormalities do not occur at random in the perspective of gen-
ome 3D conformation (Berger et al., 2011; Branco and Pombo,
2006; Engreitz et al., 2012; Mani et al., 2009; Mathas et al., 2009;
Meaburn et al., 2007; Nikiforova, 2000; Roix et al., 2003; Wijchers
and de Laat, 2011), for which we also did a thorough study and dis-
covered the somatic comutation hotspot (SCH) in 3D genome (Shi
et al., 2016), none of the existing neoantigen prediction methods
considers this spatial genomic information of somatic mutations, i.e.
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the DNA loci of these mutations in the perspective of high-order
genome 3D conformation. We believe that the 3D genome informa-
tion could contain much richer information compared to the exist-
ing amino-acid sequence-based neoantigen prediction methods.
Therefore, in this work, we retrospect the DNA origin of the neoan-
tigens, both immunopositive and immunonegative, in the context of
the genome 3D conformation, and demonstrate some discoveries
that worth paying attention to. We adopted the 3D genome infor-
mation into an ensemble peptide feature coding scheme, and devel-
oped a group feature selection-based deep sparse neural network
(DNN-GFS) model that is customized and optimized for the neoan-
tigen prediction task. We also developed an off-the-shelf webserver
that implements the DNN-GFS method along with other machine
learning methods; the webserver takes sequencing result (vcf file)
and produces prioritized neoantigens as well as some useful inter-
mediate functions such as vcf annotation and candidate neoantigen
enumeration, etc. The whole workflow is illustrated inFigure 1,
where the adoption of 3D genome information, ensemble feature
coding and the DNN-GFS algorithm are keys for distinguishing our
neoantigen prediction from all the existing methods.

2 Materials and methods

2.1 Immunogenicity data curation and reference

genome mapping
The neoantigen peptide sequences and the immune responses were
collected from the IEDB database under the T-Cell Assay category
(Vita et al., 2019). For the cross-validation experiments, we col-
lected training data before 2018 in IEDB; After collecting 337 248
peptide records in the primary dataset, we performed filtering under
Homo sapiens and MHC-I subtypes and restrained the peptide
length nine, as well as merging identical records and mapping to
human reference genome hg19. When mapping the peptides to the
reference genome, we first applied the PANDAS library to create a
data frame object for subsequent processing. Then we assigned the
column name by importing a name dictionary and filtered the data-
set so that the only entries left have H.sapiens as their hostname.
The dataset was further cleaned up by applying two functions we
developed, Letter_check and Drop_legal, which checks for amino-
acid alphabet legitimacy. We developed a pipeline to query the
BLAST (Boratyn et al., 2013) web server and map the gene names to
chromosomes and starting positions. The dataset was divided into
711 partitions where each partition contains 100 sequences. To set
up BLAST queries, we restricted the search to H.sapiens using the
entrez ID keywords and used the PAM30 matrix to find matches;
the gap costs were adjusted to regulate gap penalty. We then queried
BLAST iteratively. For each match, we adopted the accession and
raw bit score for the first hit. After obtaining the accessions, we used

the DAVID tool (Huang et al., 2009) to obtain the gene names com-
posed with gene symbols and the chromosome positions are also
obtained. The final results contain a tuple of peptides, HLA subtype,
chromosome number and chromosome position. For identical pepti-
des with multiple immune experiments, we define peptides with
positive rate >80% as immunopositive samples and with positive
rate <20% as immunonegative peptides. Finally, we obtained 3909
peptides, with 809 immunopositive peptides and 3100 immunoneg-
ative peptides. We also collected a standalone validation dataset
from IEDB dated after 2018 and performed the same operation
mentioned herein. In the end, 430 validation peptides were obtained
with 125 positive samples and 305 negative samples.

2.2 Hi-C data curation and A/B compartment

determination
For the chromatin 3D conformation data, we used two well-known
Hi-C data resources (Dixon et al., 2012; Rao et al., 2015), and
obtained eight Hi-C datasets, i.e. hESC, IMR90, GM12878,
HUVEC, IMR90-Rao, NHEK, K562 and KBM7. The Knight–Ruiz
normalization (KR-norm) was applied on both intrachromosomal
and the interchromosomal (genomewise) Hi-C contact maps. Bin
sizes of 40, 100 and 500 kb were adopted for intrachromosomal
contact frequency analyses, A/B compartment analyses and inter-
chromosomal contact frequency analyses and chromatin 3D model-
ing. To determine the compartment activeness (compartment A:
active, compartment B: inactive) of each chromosome bin, we used
individual chromosome Hi-C contact maps. We first diagonal nor-
malized each contact map by dividing the contact frequencies by
their corresponding off-diagonal mean. Then, we computed the
Pearson correlation coefficient (PCC) matrices for each chromo-
some, and the compartment type was jointly determined by the sign
of the eigenvector corresponding to the first eigenvalue of the PCC
matrices and the signal of the epigenetic marker H3k4me1.

2.3 Chromatin 3D modeling
We used MD and developed a human genome 3D conformation
modeling approach with resolution 500 kb (bin size) for all eight Hi-
C datasets. The bins were coarse-grained as beads and intact genome
was represented by bead-on-the-string structures consisting of 23
polymer chains. The beads’ spatial positioning is affected by both
chromatin connectivity that constrains linearly neighboring beads in
close 3D proximity and chromatin activity that ensures active
regions tend to be located closer to the nucleus center. The chroma-
tin activity was determined according to compartment degree that
can be directly calculated from Hi-C matrix as described earlier and
also in previous work (Xie et al., 2017). Based on compartment de-
gree index, beads were assigned distance values with respect to the
nuclear center; the conformation of chromatin was then optimized
from random structures with MDs approach by applying bias poten-
tial to satisfy these distance constraints. For each cell linage, 300
feasible conformation structures were optimized from random ones
to reduce possible variation for further analysis.

2.4 Deep sparse neural network methods
The deep feedforward networks, also known as multilayer percep-
trons (MLPs) were used in this work as the basic neural network
architecture (Goodfellow et al., 2016). For a single unit, its basic
form is y¼ƒ (x; h), where x is the input, y is the output and h repre-
sents the parameters of the network that need to be optimized by
adaptable methods. For a single middle-layer neural network, a gen-
eric form can be given as:

yk ¼ gkðWkxk þ bkÞ (1)

where fWk, bkg are the optimized parameters of the layer, corre-
sponding to h in basic form, and gk(.) is the activation function of
the layer for which we chose the widely adopted linear unit (ReLU)
and the sigmoid unit in our model. Their function forms are
g(z)¼max f0, zg and g(z)¼r(z); xk is the input and yk is the output.
Note that, an important prerequisite in our model is xkþ1 ¼ yk,

Fig. 1. Workflow of neoantigen therapy supported by 3D genome information. Left

to right: tumor sample collection from patient; Whole-exome sequencing and

mRNA sequencing for somatic mutations calling and gene expression estimation

(whether the mutated DNA is expressed into mRNA and could potentially be trans-

lated into protein/peptide), respectively; Hi-C data curation to obtain 3D genome

information; candidate peptides determined by NGS are generated and by combin-

ing 3D genome information immunopositive peptides are predicted machine learn-

ing methods; the top ranked peptides are screened by conducting animal

experiments; the final peptide penal can be applied back to the target patient. This

work aims to solve the tasks within the dashed red frame
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which makes all layers form the whole network, and specially, there
is no input xk for input layer. To obtain a set of adaptable fWk, bkg,
the network should be trained multiple times by minimizing the
regularized objective function ~J (Goodfellow et al., 2016):

~Jðh; X; yÞ ¼ Jðh; X; yÞ þ kRðhÞ (2)

In practice, only the weights (W) of h at each layer are penalized,
and to simplify the equation, h can be replaced by w (Goodfellow
et al., 2016):

~Jðw; X; yÞ ¼ Jðw; X; yÞ þ kRðwÞ (3)

where J(w; X, y) is the standard objective function, R(w) is the par-
ameter norm penalty, and k 2 ½0; 1� is a hyperparameter that
weights the two terms. Larger values of k correspond to more regu-
larization and setting k¼ results in no regularization. In this work,
we set J(.) as the cross-entropy loss. Many effective regularization
strategies have been previously studied. The most common regular-
ization strategy is the L2 norm penalization, which is usually
adopted to avoid overfitting. Its general form is:

RðwÞ ¼ kwk2
2 (4)

also known as Tikhonov regularization or ridge regression. Another
common practice is the L1 regularization, which has a similar
presentation:

RðwÞ ¼ kwk1 ¼
X

i

jwij (5)

that is the sum of absolute values of all weights. Particularly, the
least absolute shrinkage and selection operator (LASSO) is a typical
model that uses a L1 penalization. The L1 regularization can not
only avoid overfitting, but also obtain a sparser solution than L2, by
making a subset of the weights to become zero (or very close to
zero), suggesting that the corresponding features may safely be dis-
carded. Due to this important property and the ability of preventing
overfitting, L1 regularization is used in feature selection scenario ex-
tensively (Goodfellow et al., 2016). Note that, recent study has
revealed that sparsity is the key to imitate human brain for the neur-
al network (Dettmers and Zettlemoyer, 2019).

Apparently, the regularization can prevent overfitting, but its con-
tribution is not limited to that. Scardapane et al. (2017) considered
group-level sparsity, a weight grouping strategy was achieved by
grouping all outgoing connections from a single neuron, which may
induce the property of pruning the corresponding neuron from the
network. As introduced in group LASSO (Simon and Tibshirani,
2012), group sparse regularization, e.g. L2,1 norm, can be written as:

R‘21
ðwÞ¢

X

g2G

ffiffiffiffiffi
jgj

p
kgk2 (6)

where jgj is the dimensionality of the vector g, vector g corresponds
to weight matrix W, every g is one row of a matrix W, denoting all
outgoing connections from an input neuron. G is the set of g, g2G,
which is the result of grouping W by row. Furthermore, sparse
group LASSO penalization was proposed by combining LASSO and
group LASSO (Scardapane et al., 2017; Simon and Tibshirani,
2012; Simon et al., 2013)

RSGLðwÞ¢R‘21
ðwÞ þ R‘1 ðwÞ (7)

which can increase the sparsity above group sparse regularization.
In addition, the hyperparameter can be used to weight the two
terms, that is (Friedman et al., 2010):

RSGLðwÞ¢ð1� aÞR‘21
ðwÞ þ aR‘1 ðwÞ (8)

where a¼1 corresponds to the L1 term and a¼0 corresponds to the
L2,1 term. This form gives users more choice for their problem.

2.5 Group feature selection-based DNN (DNN-GFS)
Traditional DNN and some relevant sparse DNNs have a good per-
formance but remain to be improved in many research fields
(Goodfellow et al., 2016). When real problems are handled by deep
learning, there are usually some prior knowledge neglected, leading
to an unideal performance. If we only consider the datasets, it is dif-
ficult to obtain the optimal model and the corresponding parameters
we expect. Moreover, the situation will get worse with decreasing
sample size, especially in biology problems with more features than
samples. But when the prior information is imposed on models, the
model will be closer to our expectation and generalization may be
improved.

For our neoantigen prioritization problem, based on the existing
sparse DNN models (Friedman et al., 2010; Simon and Tibshirani,
2012; Simon et al., 2013), we develop a new regularization strategy
that aims to tackle both feature selection and the group sparse regu-
larization challenge, which is an extension of the L2 and L1 penaliza-
tion. Specifically, the feature grouping nature is considered in group
sparse regularization, forming a new regularization strategy. We
term it group feature selection (GFS) regularization. In the feature
vector of our neoantigen prediction problem, some groups contain
multiple features and some groups contain a single feature. In the
former cases, features of the same group need to be either all selected
or all rejected, simultaneously. This means that all outgoing connec-
tions from all neurons in one group should be either simultaneously
all zeros, or all non-zeros (Scardapane et al., 2017). The GFS regu-
larization can be written as follows:

RGFSðwÞ¢
X

�g2Gf

jFsj
ffiffiffiffiffiffi
j�gj

p
k�gk2 (9)

where vector g� is the average of the squares of g vectors of a feature
group, which can efficiently reduce computational complexity. jg�j is
the dimensionality of the vector g�, and Gƒ is the result of grouping
again by feature group information based on G (groups of group
LASSO). As Figure 2a illustrates, some features form new groups.
jFsj is the corresponding feature number matrix of Gƒ. Note that,
when a group contains a single feature, the expression can be simpli-
fied as L2,1. Moreover, for one-dimensional groups, it can also be
reduced to the standard LASSO, while for all features in a new
group, it is closer to L2 regularization. These regularization terms
other than L2 are convex but non-smooth, since their gradient is not
defined when kg�k2 5 0, which is illustrated in Figure 2c.

The GFS devised here is a flexible regularization strategy as Gƒ

can be customized according to different preferences to adapt various
requirements. Furthermore, jFsj is also chosen skillfully in this work,
i.e. jFsj can be replaced or rectified by other coefficients, which is able
to enlarge or narrow the differences among groups. When imposing
RGFS(W) on the W, we achieve the feature selection effect, as illus-
trated in Figure 2b. Results that are based on other regularization
strategies are shown in Supplementary Figures S5 and S6, and it is

Fig. 2. The DNN-GFS method. (a) Illustration of features belonging to groups of dif-

ferent sizes. All features belong to at most one group. A group can contain a single

feature or multiple features. (b) Illustration of the DNN-GFS architecture and the

GFS effect. (c) Illustration of the geometric principles of different regularization

terms applied on the weighted neural network wiring and 2D projection from three

representative views. F denotes Front view in c (1)
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demonstrated that only GFS can achieve the GFS effect. The detailed
comparisons including network structures (Supplementary Fig. S7),
sparse effects of different strategies (Supplementary Fig. S8) and tun-
ing processes (Supplementary Figs S9–S14) are also given in
Supplementary Materials. The geometric interpretations of different
approaches in 3D space and 2D projection from three representative
views is shown in Figure 2c, and more details can be found in
Supplementary Materials. Similar to L1, GFS achieves sparsity and
avoids overfitting, and moreover, the performance is improved by
exploiting group information.

3. Results

3.1 The distribution of neoantigens’ DNA loci in 3D

genome
For all the peptides (both immunopositive and immunonegative)
included in this study, we first generated a pool that contains all the
peptide pairs. Then we classified all the peptide pairs in this pool
into three categories: positive–positive pairs (Pos–Pos), negative–
negative pairs (Neg–Neg) and positive–negative pairs (Pos–Neg).
For each peptide pair, we computed contact frequencies for each Hi-
C datasets, i.e. hESC, IMR90, GM12878, HUVEC, IMR90-Rao,
NHEK, K562 and KBM7, respectively (Dixon et al., 2012; Rao
et al., 2015). The contact frequency distribution of the three catego-
ries are shown in Figure 3a. It is demonstrated that on all the Hi-C
datasets, immunopositive peptide pairs are more proximate to each
other comparing to immunonegative peptide pairs; the correspond-
ing T-test and Wilcoxon rank sum test P-values, i.e. Pos–Pos versus
Neg–Neg, are all smaller than 10�99 and 10�18, respectively. This
indicates that the immunopositive peptide’s DNA loci tend to be
more proximate in genome spatial space. We then computed the A/B
compartment type (A: active; B: inactive) for each chromosomal re-
gion (bin), based on both Hi-C dataset and epigenetic markers,
shown in Figure 3b and c. The whole genome contact maps of the
eight Hi-C datasets are shown in Supplementary Figure S2 and the
A/B compartment results of each chromosome are shown in
Supplementary Figure S3. Then, we assigned the corresponding
DNA loci of the positive and negative peptides with their A/B com-
partment type. We found that in certain chromosomes, immunopos-
itive neoantigens tend to be located on compartment A, comparing
to immunonegative neoantigens, as shown in Figure 3d and
Supplementary Figure S4. This indicates that the DNA loci of the
immunopositive or immunonegative peptides are positively corre-
lated to chromosome compartment type, either A or B, depending
on which chromosome.

We then developed a novel MD-based chromatin 3D modeling
method and mapped the immunopositive and immunonegative pepti-
des’ corresponding chromosomal loci to the constructed 3D genome
structure and calculated their radius distance to the nucleus center, as
shown in Figure 3e. We found that the immunopositive peptide’s cor-
responding loci tend to locate closer to the nuclear periphery (more
far away from the nucleus center), compared to the immunonegative
ones, as Figure 3f demonstrates. We found that by adopting the
radius position information, the prediction power of the existing
methods such as NetMHCPan and NetMHC can be elevated. In de-
tail, prediction scores defined as Ypred ¼ SNetMHCPan � r2 or Ypred ¼
SNetMHC � r2 can significantly better discriminate the immunopositive
peptides from the immunonegative peptides, comparing to using
NetMHCPan or NetMHC alone. We thus believe that the DNA loci’s
radius positions of the immunopositive and immunonegative peptides
are significantly differently distributed and can play an important role
in predicting pMHC-I immunogenicity.

3.2 Peptide encoding and predictions
A reasonable and proper peptide-encoding strategy is a key to the
downstream predictions as it can include and quantify more features
that are plausibly related to the outcome. But by including more fea-
tures into the prediction model, we also increase the risk of adding
noisy (irrelevant) features into the feature pool and making the pre-
diction prone to overfitting. To overcome this dilemma, we propose

to first enumerate as many features as possible and then perform fea-
ture selection within the training process of the prediction modeling.
Previous neoantigen prediction methods adopted one or more cod-
ing schemes such as amino-acid (AA) composition, AA sparse cod-
ing, BLOSM, BLOMAP, and so on. In this work, based on the
earlier observation that chromatin 3D information may significantly
contribute to discriminating immunopositive peptides from immu-
nonegative ones, we adopted this piece of information in the
peptide-encoding strategy. In detail, the 3D coordinates and the ra-
dius positions of the Hi-C data based 3D modeling results, the HLA
subtype encoding, the amino-acid compositions, the sparse coding,
BLOMAP coding and BLOSUM coding of the peptides, the
AAindex2 coding of the peptides are adopted and collected as fea-
tures. At the end, we obtained a training matrix with 3909 peptides
and 5459 features, shown in Figure 4a. Note that as Figure 4a dem-
onstrates, there is no obvious pattern that a single feature or a group
of features are correlated to the true label vector.

Fig. 3. The DNA loci of neoantigens in 3D genome. (a) Distribution of proximities

between peptide pairs of different types. Immunopositive peptide pairs tend to be

more proximate to each other comparing to immunonegative ones, while immuno-

positive–negative pairs lie in between (all the P-values of the T-test comparison are

smaller than 10�99). (b) Illustration of Hi-C submatrices of compartment A and B

on chromosome 1. (c) Illustration of eigenvalues of compartment A (red) and B

(blue) on chromosome 1. (d) Comparison of percentages of immunopositive peptide

belonging to compartment A (red) and immunonegative peptide belonging to com-

partment A (blue). (e) The 3D genome molding results based on hESC and IMR90

Hi-C datasets and the distribution of the DNA loci of immunopositive (yellow to

red color spectrum, depending on positive occurrence on the same 500k bin) and

immunonegative peptides (green). (f) Radius position comparison of the immuno-

positive and immunonegative peptides’ DNA loci 3D genome. The positive loci

(red) are significantly closer to the nuclear periphery (more far away from the nu-

cleus center), compared to the immunonegative ones (green); they are all closer to

the nuclear periphery comparing to the background distribution (blue). All T-test P-

values are smaller than 10�99
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In theoretical deep neural network (DNN) studies, there have
been plenty of evidences pointing to the fact that the majority of
weights in most deep networks are redundant and may jeopardize
the prediction accuracy (Han et al., 2015; Sainath et al., 2013;
Scardapane et al., 2017). It is possible to learn only a small percent-
age of the weights, while still preserving the prediction accuracy
(Han et al., 2015). Nevertheless, studies focusing on the input fea-
ture selection-based neural network are limited. Moreover, in the
neoantigen prediction problem, the features that encode the peptides
come in groups, e.g. the 3D coordinates <x, y, z> of a peptide’s
DNA loci are in one group, or the sparse coding for an amino acid is
a group of 20 binary features, etc. Therefore, when imposing feature
selection on the DNN, it should be in a group fashion, i.e. features
belonging to the same group should be either all selected or all
rejected. The DNN-GFS is introduced in detail in the Section 2.

To compare the prediction efficacy, in addition to DNN-GFS,
we also applied traditional L2 norm DNN, support vector machine
(SVM), logistic regression (LR) and k-nearest neighbor (KNN) clas-
sifiers on the 5459 encoded feature matrix. Moreover, we included
the widely adopted methods IEDB-immunogenicity, NetMHCpan
and NetMHC into the comparison, as well as the most recent
popular methods Neopepsee, pTuneos and DeepHLApan. The com-
parison was conducted in the framework of both cross-validation
(5-fold or leave-one-out) and validation alone. The ROC curves are
shown in Figure 4b, d and f; the precision–recall curves are shown in
Figure 4c, e and g; the prediction score distributions for the immu-
nopositive and immunonegative samples are shown in Figure 4h, i
and j. Note that, in the ten prediction methods, the KNN and LR
output binary values, so for precision–recall curve comparison, we
excluded them. Detailed prediction statistics are shown in
Supplementary Tables S1-1, -2 and S2. As the comparison results
demonstrate, the deep learning-based approaches DNN-GFS and
DNN outperform the rest of the methods and DNN-GFS, due to its
feature selection potency, is better than traditional DNN. The SVM,
Neopepsee, pTuneos and DeepHLApan are also effective methods
and ranked second tier among the ten methods. Although NetMHC
and NetMHCpan were initially designed to predict peptide–MHC
binding affinity, their capability in predicting neoantigen cannot be
neglected and they are ranked third tier. The logistic regression and
KNN classifiers, although performs reasonably well in cross-
validation experiments, are not very stable when applied on the
standalone validation set. The IEDB-immunogenicity prediction
method, does not catch up with other prediction methods, possibly

due to the fact that the immunogenicity scoring function is too sim-
ple to capture subtle sequence features that only advanced non-
linear machine learning methods can. We also implemented other
well-known sparse learning neural network models and compared
their efficacy with DNN-GFS, as introduced in Supplementary
Tables S1 and S2, and the results indicate that DNN-GFS outper-
forms existing sparse neural network methods in terms of prediction
statistics.

3.3 Features selected by DNN-GFS
Based on the whole training dataset, the DNN-GFS model selected
2693 features out of the 5459 features, achieving a feature sparsity
ratio 49.33%. Features belonging to the same group are either all
selected or all excluded. Among the selected features, all the 3D
genome-related features are selected, including radius position,
HLA subtype, 3D coordinates of peptides’ DNA loci, and so on. For
HLA subtype-encoding, all features are selected and cross-validation
performance is improved about 3–4% compared to dataset of not
containing HLA subtype information, which illustrates their import-
ance. For nine AA peptides, the sparse coding of the peptide’s pos-
ition one to five and seven to eight are all selected but not position
six and nine. BLOSUM coding features are all excluded while
BLOMAP coding features for AA position one to four are selected.
Except AA position five, other side chain polarity features are all
selected, and side-chain charge features for position one to three
are selected. For the hydropathy features, AA position five and nine
are selected, and for molecular weight, feature of AA position two,
six and nine are selected. Other selected features are mostly
AAindex2-related features. The DNN-GFS model thus suggests that
the combination of these grouped features play an important role in
building the prediction model and we believe that the importance of
these features in neoantigen prediction is worth further investigat-
ing. Detailed feature selection and model sparsity analyses can be
found in Supplementary Materials.

4. Discussion

From the association study of peptides’ immunogenicity and their
3D genome information, we found that immunopositive peptides’
DNA loci tend to be more proximate to each other and locate closer
to the nuclear periphery, i.e. greater radius value to the nuclear
center, comparing to immunonegative ones. This implies that if a
non-synonymous mutation happens closer to some non-synonymous
mutation that were already proven to produce immunopositive pep-
tides, or if it is located closer to the nuclear periphery, the mutation
is more likely to generate immunopositive neoantigens. This associ-
ation can be further enhanced if the A/B compartment information
of the mutation is provided. In practice, the whole genome spatial
organization is more conserved across different cell types and
even in mutated cancer cells. While A/B compartment characters of
certain chromatin regions may flip across cell lines or in cancer cells,
i.e. more transient, we only adopted the 3D coordinates and radius
position of peptides’ DNA loci in the prediction model, but if the
A/B compartment information can also be included if the real-
time cancer cell’s chromatin 3D experiment can be performed in
the future.

To explain such intriguing relationship between 3D genome and
the neoantigens’ immunogenicity, factors of at least three aspects
should be considered: First, the non-random nature of coding se-
quence distribution in 3D genome: during evolution, wild-type cod-
ing sequences where neoantigens of different immunogenicity
characters originate are located in different regions of the nucleus
(Gorkin et al., 2019; Svozil et al., 2008). Second, the gene expres-
sions affected by 3D genome: the missense mutations need to be
transcribed to generate potential neoantigens and the gene expres-
sions are known to be affected by high-order genome organization
(Gorkin et al., 2014). Third, the non-random occurrences of somatic
mutations in 3D genome: previous discoveries indicated that somat-
ic mutations may not occur at random, and we systematically
studied and discovered in our prior work that comutations may

Fig. 4. Prediction results comparison. (a) The leftmost column vector indicates the

true labels of the immunopositive (yellow) and immunonegative (green) for each of

the 3909 peptides. The matrix heatmap indicates the columnwise normalized fea-

ture values of the 3909 peptides by 5459 features. (b) and (c) are the ROC plot com-

parison for DNN-GFS, DNN, SVM, LR, KNN, Neopepsee, pTuneos,

DeepHLApan, NetMHCpan, NetMHC and IEDB-immuno, under 5-fold and leave-

one-out (LOO) cross-validation, respectively. (d) and (e) are the precision–recall

plot comparison for different prediction methods under 5-fold and LOO cross-val-

idation, respectively. (f) and (g) are the prediction score (normalized) distribution

comparison for immunopositive (left violins) and immunonegative peptides (right

violins); all the P-values of the T-tests are equal to or very close to zero
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occur in a spatial clustering fashion in genome 3D space (spatial
comutation hotspot, SCH), possibly due to abnormal chemical con-
centration or a systematic DNA repair protein failure at certain
chromatin 3D loci (Shi et al., 2016). This leads to a straightforward
hypothesis that mutations in different chromosomal regions may
carry different immunogenicity character, affected by wild-type cod-
ing sequences, somatic mutation patterns and gene transcriptions. We
thus believe that it is worth considering these aspects when studying
the underlying mechanism of how high-order genome organization
affects neoantigens’ immunogenicity. For example, to explain our dis-
covery that immunopositive neoantigens’ corresponding DNA
sequences tend to locate closer to nucleus periphery (greater radius to
the nuclear center), one may consider the fact that their transcribed
missense mRNAs enter cytoplasm more easily (a shorter path from
transcription loci to nuclear envelope). Core genes during evolution,
if mutated, require stronger TCR responses, because otherwise it
causes greater cancerous impact, and these genes are usually
expressed across cell types and their distribution in 3D genome also
worth further study. Therefore, it is also worth to investigate the rela-
tionship between neoantigen immunogenicity and gene evolutionary
essentiality in the perspective of high-order genome conformation.

When building the prediction models, due to the fact that most
MHC-I presented peptides are of nine amino-acid long, the features
we used to encode the peptides are all based on 9mer peptides, and
the predictions are targeted on the 9mers as well. Nevertheless, our
approach is not restricted to 9mers and can be easily extended to
peptides of other length. For example, if a target peptide is longer
than nine amino acids, a sliding window of length nine can be used
to enumerate all possible 9mers, and the prediction score can be esti-
mated by taking the maximum or average of each individual scores.
In the cases where a target peptide is shorter than length nine, we
only need to consider length eight as peptides presented by MHC-I
shorter than or equal to length seven is very rare. So, for the 8mer
cases, we can compensate an extra amino acid to the beginning or to
the end of the sequence and enumerate all possible peptides and
again take the maximum or average of each individual one’s predic-
tion score.

Most existing machine learning algorithms for the classification
problem usually assume that the feature across different training
examples is independent and obey the same distribution, and the
links among them are usually neglected which is not reasonable for
an unbalanced problem. In many real-world applications, however,
the small sample issue is ubiquitous and the features are usually cor-
related. The DNN-GFS developed here provides a new way of
exploiting these links for feature selection in addition to traditional
neural networks. In the machine learning area, quite a few studies
have exploited introducing sparse regularization into DNN frame-
work, but most of these models only focus on reducing complexity
of the network as a whole, resulting in pruning edges and nodes of
the network, but not specifically targeting on the input layer, i.e. the
input feature vector. In this work therefore, due to the scenario that
peptides are represented in an ensemble encoding which may intro-
duce noise or redundant features into the learning process, the pro-
posed DNN-GFS model focus on reducing the features of the input
layer. Moreover, due to the nature that certain features are grouped
and should be either all selected or all rejected, we considered select-
ing features in a grouped fashion in the model, by imposing group-
specific regularization. As shown in Figure 4, the DNN-GFS model
not only exceeds the widely adopted methods NetMHCpan and
NetMHC, but also exceeds other existing machine learning methods
such as DNN, LR, SVM and KNN that are performed based on
the same 5459 feature encoding strategy. Moreover, DNN-GFS out-
performs other sparse learning DNN models, as shown in
Supplementary Tables S3–S10. This agrees with our conjecture that
DNN-GFS is a better DNN heuristic designed specifically for the
neoantigen prediction in the specific 5459 encoding scenario.
Although DNN-GFS outperforms the widely adopted NetMHCpan
and NetMHC methods to a large extend, due to its ability of captur-
ing subtle non-linear relationships of features in a grouped fashion,
the prediction power can be further improved once more immuno-
genicity training data are provided, especially for each HLA

subtypes. We also believe that DNN-GFS can also be applied in
other problems where GFS is demanded.

To facilitate practical usage, we developed a webserver
deepAntigen (Supplementary Fig. S1). In the current version, if the
end user only provides sequencing result vcf file, the candidate pepti-
des will be generated by only considering non-synonymous point
mutations, i.e. 9mer peptides surrounding the mutated amino acid,
while small insertions or deletions (INDEL) can also be considered
as rankPep function is independent and user can provide their own
plausible peptides for prediction. For the prediction method, we sug-
gest to use DNN-GFS as its power of discriminating immunopositive
peptides from immunonegative ones are most potent, but other ma-
chine learning approaches can also be considered and the consensus
result maybe of more interest to an end user.

Although the mechanism of under what conditions certain specific
neoantigens activate T-cell immunogenicity is still under studying,
this work focuses on the machine learning challenge of effectively and
efficiently predict/prioritize immunopositive neoantigens. We found
that the spatial distributions of the immunopositive and immunonega-
tive peptides’ corresponding DNA loci follow different patterns, i.e.
immunopositive peptides’ DNA loci tend to be located more proxim-
ate to the nuclear periphery and tend to be more clustered in 3D gen-
ome space, compared with immunonegative peptides’ DNA loci; the
peptides’ DNA loci distribution is also related to the A/B compart-
ment of the chromatin. It is therefore salient that utilizing the 3D gen-
ome information of the peptides’ corresponding DNA loci can
significantly contribute to the prediction of immunopositive neoanti-
gens. To utilize the most of 3D genome information, we customized a
DNN-GFS model, which takes not only the 3D genome information,
but also a combinatorial peptide sequence features represented by an
ensemble peptide-encoding strategy. The DNN-GFS selected 3D gen-
ome related features as well as some other important peptide se-
quence features and position specific amino-acid features; the
comparison studies demonstrated that DNN-GFS outperforms the
widely adopted methods NetMHCpan and NetMHC, and other ma-
chine learning prediction models including DNN, SVM, LR and
KNN. DNN-GFS is implemented in the webserver deepAntigen along
with other machine learning methods. To the best of our knowledge,
this is the first time that the DNA origins’ 3D genome perspective is
considered in the neoantigen study and we hope that our work con-
tributes novel insights to neoantigen study and eventually benefits
personalized cancer immunotherapy. Although close-up studies are
needed to uncover the relationship between 3D genome and neoanti-
gen immunogenicity, in this work, we only demonstrate the contrib-
utes of 3D genome information in more accurate neoantigen
prediction, as well as providing plausible explanation that it is evolu-
tion that places sequences of different immunogenicity characters in
different locations in the 3D genome while different locations are
prone to mutations of different causes.
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